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Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal with dimensions of  2134 mm
3 
has been grown by the Czochralski method. The polarized 

spectral properties were investigated. Based on the Judd-Ofelt theory, the oscillator strength parameters, transition 

probability, fluorescence branching ratio and radiative lifetime were estimated. The stimulated emission cross-sections of 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal were calculated to be 21.010
-21

cm
2
 at 1541nm for the π-polarization and 2.2510

-20
cm

2
 at 

1536nm for the σ-polarization. The quantum efficiency ηc, Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal is 40.3%. In comparison with 

Er
3+

:Sr3Y(BO3)3 crystal, the spectral properties of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal are better than that of Sr3Y(BO3)3 crystal. 

The investigated results showed that after the Ca
2+

 ion partly substitute for Sr
2+ 

ion in Sr3Y(BO3)3 crystal to form the 

(Sr0.7Ca0.3)3Y(BO3)3 solid solution, it can greatly improve the quantum efficiency  of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal. 

Therefore, Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal may be become a 1.55 m laser crystal materials. 
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1. Introduction 

 

Since the 1.55 m laser of Er
3+

 ions through 
4
I13/2 → 

4
I15/2 transition has wide applications in optical 

communication technology, medical and eye-safe laser, 

the Er
3+

-doped laser materials have attracted much 

attention. Up to now, the spectral properties of Er
3+

 ions in 

many materials have been widely investigated, such as 

YVO4 [1], Y3Al5O12 [2], YAlO3 [3], KGd(WO4)2 [4], 

KY(WO4)2 [5] and NaY(MoO4)2 [6]. 

The M3Re(BO3)3 (M = Ba, Sr, Ca; Re=La-Lu, Y, Sc) 

compound belongs to the hexagonal system with space 

group


3R . The M3Re(BO3)3 (M = Ba, Sr, Ca; Re=La-Lu, 

Y, Sc) crystals are regarded as potential laser host material 

owing to their good chemical, physical and spectral 

properties. [7-13]. The Sr3Y(BO3)3 crystal is a member of 

M3Re(BO4)3 (M = Ba, Sr, Ca; Re=La-Lu, Y, Sc) family. 

Recently, it was found that when the Ca
2+

 ions partly were 

substituted for the Sr
2+

 ions in (Sr0.7Ca0.3)3Y(BO3)3 crystal 

to form the solid solutions (Sr0.7Ca0.3)3Y(BO3)3, the 

Yb
3+

-doped Sr3Y(BO3)3 solid solution showed good 

spectral properties [14]. Recently, our laboratory has 

investigated the Er
3+

-doped Sr3Y(BO3)3 crystal, the 

investigated results showed that Er
3+

:Sr3Y(BO3)3 crystal 

may be regarded as a potential laser host materials for 1.55 

m laser [15]. In order to improve further the spectral 

properties of Er
3+

:Sr3Y(BO3)3 crystal, we hope that when 

the Ca
2+

 ion partly substitute for Sr
2+ 

ion to form the 

(Sr0.7Ca0.3)3Y(BO3)3 solid solution, it can improve the 

spectral properties. To explore new more efficient Er
3+

 

laser crystal, this paper reports the growth and spectral 

properties of Er
3+

-doped (Sr0.7Ca0.3)3Y(BO3)3 crystal. 

 

2. Experiment 

 

Since the Sr3Y(BO3)3 crystal melts congruently at 

1400
o
C [10], Er

3+
-doped (Sr0.7Ca0.3)3Y(BO3)3 crystal can 

be grown by Czochralski method. The chemicals used were 

Sr2CO3, CaCO3, Y2O3, H3BO3 and Er2O3 with purity of 

99.99%. The raw materials were synthesized by the 

solid-state reaction method. The raw materials were 

weighed accurately according to the stoichiometric ratio of 

(Sr0.7Ca0.3)3Y0.97Er0.03(BO3)3. A 3wt% excess amount of 

H3BO3 was added to compensate the loss of B2O3 

volatilization in the process of the solid-state and growth. 

The weighed raw materials were ground and extruded to 

form pieces. Then pieces were placed in a platinum crucible 

and held to 900℃ for 24 h. The process was repeated once 

again to assure adequate solid-state reaction. The 

synthesized raw materials were placed in an iridium 

crucible with dimension of  4540 mm
3
. The crystal was 

grown by Czochralski method in a 2.5 kHz frequency 

induction furnace in N2 atmosphere. The full charged 

crucible was placed into the furnace and slowly heated up 

to 1500
o
C. The melt was held at 1500

o
C for 2 h to 

evacuate the bubbles out of the melt. After repeating 
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seeding and adjusting the growth temperature to about 

1400
o
C, the crystal was grown using a pulling rates of 

1mm/h and a rotating rate of 15 rpm. When growth process 

ended, the grown crystal was drawn from the melt and 

slowly cooled to room temperature at a cooling rate of 

15
o
C/h.  

A sample cut from the as-grown crystal (Fig. 1(b)) 

along c-axis was used to measure the absorption and 

emission spectra of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal. The 

polarized absorption spectra were measured using a 

Perkin-Elmer UV-vis-NIR spectrometer (Lambda-900) in 

range of 300-1700nm at room temperature. The polarized 

fluorescence spectra and fluorescence lifetime were 

measured using an Edinburgh Instruments FLS920 

spectrophotometer with a continuous Xe-flash lamp as a 

light. In the experiment the - and -polarizations are 

defined in terms of the E-vector being parallel or 

perpendicular to the c-axis, respectively. 

 

 

(a) 

 
(b) 

 

Fig. 1. (a) As-grown Er3+:(Sr0.7Ca0.3)3Y(BO3)3 crystal; (b) 

Polished sample of Er3+:(Sr0.7Ca0.3)3Y(BO3)3 crystal. 

 

 

3. Results and discussion 

 

3.1 Crystal growth 

 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal with dimensions of  

2134 mm
3
 was obtained, as shown in Fig.1 (a). The 

concentration of Er
3+

 in the Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 

crystal was measured to be 2.80 at.％ (i. e. 1.4910
-20 

ions/cm
3
) by inductively coupled plasma atomic emission 

spectroscopy (ICP-AES). The segregation coefficient of 

Er
3+

 in Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal was calculated to 

be 0.93 by the following formula:  

           

0k

k
k e

eff                     (1) 

where ek and 0k  are the concentrations of Er
3+

 ions in 

the solid and liquid phase, respectively. 

 

 

3.2 Absorption spectra and Judd-Ofelt analysis  

 

Fig. 2 shows the polarized absorption spectra of the 

2.80 at. % Er
3+

-doped (Sr0.7Ca0.3)3Y(BO3)3 crystal. The 

observed 9 absorption lines around 376, 407, 450, 488, 

524, 655, 801, 974, and 1516 nm are assigned to 

transitions from the 
4
I15/2 ground to the 

4
G9/2+

4
G11/2, 

2
H9/2, 

4
F3/2, 

4
F5/2, 

2
H11/2, 

4
F9/2, 

4
I9/2, 

4
I11/2, and 

4
I13/2 excited state in 

proper order. 

 

Fig. 2. Polarized absorption spectra of Er3+:(Sr0.7Ca0.3)3Y(BO3)3 

crystal at room temperature. 

 

 

The absorption cross-section ab was determined 

using ab= α/Nc formula, where α is absorption coefficient, 

Nc is the concentration of Er
3+

 ions in 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal. The absorption 

cross-section ab at 524, 970 nm are 6.0210
-20 

cm
2
 and 

1.3010
-20 

cm
2
 for σ-polarization,

 
and σab

 
at 524, 970 nm 

are 6.0410
-20 

cm
2
 and 1.4410

-20
 for π-polarization, 

respectively. 
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Based on Judd-Ofelt theory [15, 17], the data of 

absorption spectra can be used to predict the oscillator 

strength parameter t, radiative lifetime rad, branching 

rations  and transition probability A. The calculating 

procedures follow those described elsewhere [18-20]. The 

calculated results are listed in Table 1, 2 and 3, including 

first measured the line oscillator strength fmea of the 

transitions between the ground 
4
I15/2 (J=15/2) manifold and 

the excited J'-manifold.  

                         

Table 1. Oscillator strength parameters and emission cross-sections of Er3+in Er3+:(Sr0.7Ca0.3)3Y(BO3)3 and other Er3+-doped crystals. 

 

crystal Ω2 

(10
-20

 cm
2
) 

Ω4 

(10
-20

 cm
2
) 

Ω6 

(10
-20

 cm
2
) 

σem 

(10
-21 

cm
2
) 

ηc (%) Ref. 

Sr3Y(BO3)3       

                 

1.71 

1.77 

1.39 

1.44 

0.74 

0.65 

4.75 

6.30 

7.9 [15] 

YAG 0.45 0.98 0.62 4.5  [24] 

La2(WO4)3 7.20 1.05 0.31 4.14  [25] 

Ca3La2(BO3)4 7.18 3.27 2.79 9.06  [26] 

(Ca0.3Sr0.7)3Y(BO3)3   

                   

14.7 

14.9 

4.95 

4.59 

5.17 

5.64 

21.0 

22.5 

40.3 This work 

 

Table 2. Experimental and calculated line oscillator strengths of Er3+ in Er3+:(Sr0.7Ca0.3)3Y(BO3)3 crystal (in units of 10-6). 

 

Transitions - Polarization -Polarization
 

 Λ (nm) fexp fcal

 
λ (nm) fexp

 
fcal

 

4
I13/2 1516   6.29 5.84 1518 6.84 6.27 

4
I11/2 974   1.83 2.70 975   1.96 2.90 

4
I9/2 801 1.04 1.21 801 1.00 1.14 

4
F9/2 655 7.83 8.22 655 7.82 8.26 

2
H11/2 524 2.48 2.65 524 2.47 2.66 

4
F5/2

 
 488 7.45 8.68 488 7.60   9.19 

4
F3/2 450 2.94 4.30 450 2.82 4.69 

2
H9/2 407 3.00 3.30 407 2.94 3.56 

4
G9/2, 

4
G11/2 376 5.45 5.26 376 5.48 5.28 

  
rms(Δf) 1.34×10

-6
 1.61×10

-6
 

rms error 6.62% 7.92% 
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Table 3. Calculated transition probabilities, radiative lifetime and branching ratios of Er3+ in Er3+:(Sr0.7Ca0.3)3Y(BO3)3 crystal. 

 

Transition J→J′ λ(nm) Aed(s
-1

) Amd(s
-1

) Atotal(s
-1

) β τrad(ms) 

4
I13/2→

4
I15/2 1543 577.029 48.458 625.489 1 1.599 

4
I11/2→

4
I13/2 

→
4
I15/2 

  2746 

988 

99.364 

764.065 

10.821 

 
874.251 

12.603 

87.396 
1.144 

4
I9/2 →

4
I13/2 

    →
4
I15/2 

1703 

809 

275.976 

534.549 

 

 
816.018 

33.820 

65.507 
1.225 

4
F9/2→

4
I9/2 

→
4
I11/2 

→
4
I13/2 

→
4
I15/2 

3466 

1956 

1142 

656 

16.771 

371.714 

281.264 

5969.187 

3.348 

7.601 

 

 

6649.885 

0.302 

5.704 

4.229 

89.763 

0.1503 

4
S3/2→

4
I9/2 

→
4
I11/2 

→
4
I13/2 

→
4
I15/2 

1665 

1215 

842 

545 

323.637 

202.543 

2272.226 

6422.591 

 9675.470 

3.345 

2.093 

28.135 

66.384 

0.1033 

 

 

3.3 Fluorescence spectra and stimulated emission  

   cross-section 

 

Fig. 3 displays the polarized fluorescence spectra of 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 at room temperature, which was 

excited by the 521nm radiation. The broad emission band 

extends from 1450 to 1645 nm corresponding to the 
4
I13/2 

→ 
4
I15/2 transitions of Er

3+
 ion. The stimulated emission 

cross-sections em (λ) can be estimated from the 

fluorescence spectra using the following 

Füchtbauer-Ladenburg (FL) formula [21]: 

 

 
 

     




dIIIcn

I

ZYXr

em

 


)(8

3
2

5

,  (15) 

 

where I(λ) is the fluorescence intensity at wavelength λ, τr 

is the radiative lifetime, and β is the branching ratio, which 

equates to 1 for the 
4
I13/2→

4
I15/2 transition of Er

3+
. Using 

the parameters obtained above, the stimulated emission 

cross-sections of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal can be 

estimated. The stimulated emission cross-sections of the 
4
I13/2→

4
I15/2 transition at various wavelengths are shown in 

Fig. 4. The stimulated emission cross-sections em (λ) of 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal were calculated to be 

21.010
-21

cm
2
 at 1541 nm for the π-polarization and 

2.2510
-20

cm
2
 at 1536 nm for the σ-polarization, 

respectively. 

 

 

 

Fig. 3. Polarized fluorescence spectra of 

Er3+:(Sr0.7Ca0.3)3Y(BO3)3  crystal  excited by  521 nm  

         radiation at  room temperature. 

 

Fig. 4. Polarized emission cross-section for the 
4I13/2→

4I15/2  transition  of   Er3+:(Sr0.7Ca0.3)3Y(BO3)3  

            crystal at room temperature. 
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Since the Er
3+

 laser via the 
4
I13/2→

4
I15/2 transition 

operates in a three-level scheme, the emission spectra are 

not sufficient to predict which of the polarizations exhibit 

higher gain. This can be determined by calculating the 

gain cross-section according to [22]: 

 

)()1()()(  absemgain  ,    (16) 

 

where β is the ratio of the inverted ions to the total 

Er
3+

-ion density. The relations between the calculated 

polarized gain cross section and wavelength in two 

polarizations with different β values (β = 0.1, 0.3, 0.5, 0.7, 

0.9) is shown in Fig. 5. Laser gain is expected to occur 

only when gain (λ) > 0 [23]. In Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 

crystal, a laser gain in the eye-safe range window is 

possible for β ≥ 0.5. Generally speaking, the gain cross 

section is larger on the long wavelength edge, where 

reabsorption losses are small. Fig. 5 shows that the gain 

cross-section gain (λ) > 0 for β=0.5, so laser emission can 

be realized in a wild range of 1535 nm to 1625 nm, which 

is available for use of tunable and ultra short laser. 

 

 

 

 

 

 

Fig. 5. Fain cross-section of Er3+:(Sr0.7Ca0.3)3Y(BO3)3  

crystal for both polarizations. 

 

The fluorescence lifetime f of 
4
I13/2→

4
I15/2 transition 

was measured to be 0.645 ms at room temperature (Fig. 6). 

Thus, the quantum efficiency ηc, which is defined as ηc= f 

/r, is 40.3%.  

 

 

 

 

Fig. 6. Fluorescence decay curve of 

Er3+:(Sr0.7Ca0.3)3Y(BO3)3 crystal corresponding to the 
4I13/2→

4I15/2 transition excited with 521nm laser radiation  

                at room temperature. 

 

 

Table 1 lists the main spectral parameters of 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal and some other 

Er
3+

-doped crystal. In comparison with Er
3+

:Sr3Y(BO3)3 

crystal, the Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal has large 

oscillator strength parameters t and emission 

cross-section (see Table 1). The large value of 2 mainly 

originates from the absorption of the hypersensitive 

transition of 
4
I15/2

4
G11/2 and 

4
I15/2

2
H11/2. The stimulated 

emission cross-sections em (λ) of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 

crystal is larger than that of Er
3+

:Sr3Y(BO3)3 and the other 

Er
3+

-doped crystals (see Table 1). The quantum efficiency 

ηc of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal is larger than that 

(7.9%) of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal [23]. In a word, 

the spectral properties of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal 

are than of Er
3+

:Sr3Y(BO3)3 crystal. The good spectral 

properties of Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal were caused 

by its structure disorder. When the Ca
2+

 ions partly were 

substituted for Sr
2+ 

ion in Sr3Y(BO3)3 crystal to form 

(Sr0.7Ca0.3)3Y(BO3)3 solid state, it resulted in the structure 

disorder of (Sr0.7Ca0.3)3Y(BO3)3 crystal [14]. It generally 

believes that the disorder structure can improve the 

spectral properties of crystal materials [27, 28].  

 

 

4. Conclusion 

 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal has been successfully 

grown by the Czochralski method. In comparison with 

Er
3+

:Sr3Y(BO3)3 crystal, the spectral properties of 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal have been greatly 

improved, such as large oscillator strength parameters t, 
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large stimulated emission cross-sections em (λ) and high 

quantum efficiency ηc. Therefore, above results shows that 

after the Ca
2+

 ion partly substitute for Sr
2+ 

ion in 

Sr3Y(BO3)3 crystal to form the (Sr0.7Ca0.3)3Y(BO3)3 solid 

solution, it can improve the spectral properties of 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal. Therefore, 

Er
3+

:(Sr0.7Ca0.3)3Y(BO3)3 crystal may be regarded as a 1.55 

m laser gain medium candidate. 
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